Ad
related to: high frequency noise examples in psychology questions and answersstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
It is a common understanding in psychoacoustics that the ear cannot respond to sounds at such high frequency via an air-conduction pathway, so one question that this research raised was: does the hypersonic effect occur via the "ordinary" route of sound travelling through the air passage in the ear, or in some other way?
For example, the interference of two pitches can often be heard as a repetitive variation in the volume of the tone. This amplitude modulation occurs with a frequency equal to the difference in frequencies of the two tones and is known as beating. The semitone scale used in Western musical notation is not a linear frequency scale but logarithmic.
Neuronal activity at the microscopic level has a stochastic character, with atomic collisions and agitation, that may be termed "noise." [4] While it isn't clear on what theoretical basis neuronal responses involved in perceptual processes can be segregated into a "neuronal noise" versus a "signal" component, and how such a proposed dichotomy could be corroborated empirically, a number of ...
[6] [7] The ERB can be converted into a scale that relates to frequency and shows the position of the auditory filter along the basilar membrane. For example, ERB = 3.36 Hz corresponds to a frequency at the apical end of the basilar membrane, whereas ERB = 38.9 Hz corresponds to the base, and a value of 19.5 Hz falls half-way between the two. [6]
The frequency of a sound is defined as the number of repetitions of its waveform per second, and is measured in hertz; frequency is inversely proportional to wavelength (in a medium of uniform propagation velocity, such as sound in air). The wavelength of a sound is the distance between any two consecutive matching points on the waveform.
Place theory is a theory of hearing that states that our perception of sound depends on where each component frequency produces vibrations along the basilar membrane.By this theory, the pitch of a sound, such as a human voice or a musical tone, is determined by the places where the membrane vibrates, based on frequencies corresponding to the tonotopic organization of the primary auditory neurons.
Traditional classification of the frequency bands, that are associated to different functions/states of the brain and consist of delta, theta, alpha, beta and gamma bands. . Due to the limited capabilities of the early experimental/medical setup to record fast frequencies, for historical reason, all oscillations above 30 Hz were considered as high frequency and were difficult to investigate.
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]