Ad
related to: 40 meter dipole dimensions in mm diameter diagram chart
Search results
Results From The WOW.Com Content Network
A HB9XBG Full Size Vertical Antenna for the 40m-band on Simplon Pass with view to Mount Fletschhorn. The 40-meter or 7-MHz band is an amateur radio frequency band, spanning 7.000-7.300 MHz in ITU Region 2, and 7.000-7.200 MHz in Regions 1 & 3. It is allocated to radio amateurs worldwide on a primary basis; however, only 7.000-7.200 MHz is ...
The relative scale-size k ranges from about 0.98 for thin wires (diameter, 0.00001 wave) to about 0.94 for thick conductors (diameter, 0.008 wave). This is because the effect of antenna length on reactance (upper graph) is much greater for thinner conductors so that a smaller deviation from the exact half wavelength is required in order to ...
Due to the size required to create a far-field range for large antennas, near-field techniques were developed, which allow the measurement of the field on a distance close to the antenna (typically 3 to 10 times its wavelength). This measurement is then predicted to be the same at infinity.
The characteristic impedance of twin lead is a function of the insulating material and its thickness, and the wire diameter and its spacing; in the most common type, 300 Ω twin-lead ribbon cable, the wire is usually AWG 20 or 22 (0.52 or 0.33 mm²), about 7.5 millimetres (0.30 in) apart.
A dipole in such a uniform field may twist and oscillate, but receives no overall net force with no linear acceleration of the dipole. The dipole twists to align with the external field. However, in a non-uniform electric field a dipole may indeed receive a net force since the force on one end of the dipole no longer balances that on the other end.
In its use as a television antenna, it was common to combine a log-periodic design for VHF with a Yagi for UHF, with both halves being roughly equal in size. This resulted in much higher gain for UHF, typically on the order of 10 to 14 dB on the Yagi side and 6.5 dB for the log-periodic. [ 5 ]
The J-pole antenna is an end-fed omnidirectional half-wave antenna that is matched to the feedline by a shorted quarter-wave parallel transmission line stub. [5] [1] [6] For a transmitting antenna to operate efficiently, absorbing all the power provided by its feedline, the antenna must be impedance matched to the line; it must have a resistance equal to the feedline's characteristic impedance.
The gain and input impedance of the antenna is dependent on the length of the whip element, compared to a wavelength, but also on the size and shape of the ground plane used (if any). A quarter wave vertical antenna working against a perfectly conducting, infinite ground will have a gain of 5.19 dBi and a radiation resistance of about 36.8 ohms.