When.com Web Search

  1. Ad

    related to: continuum hypothesis maths pdf example book report assignment for middle school

Search results

  1. Results From The WOW.Com Content Network
  2. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    The continuum hypothesis was advanced by Georg Cantor in 1878, [1] and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being ...

  3. List of statements independent of ZFC - Wikipedia

    en.wikipedia.org/wiki/List_of_statements...

    the continuum hypothesis or CH (Gödel produced a model of ZFC in which CH is true, showing that CH cannot be disproven in ZFC; Paul Cohen later invented the method of forcing to exhibit a model of ZFC in which CH fails, showing that CH cannot be proven in ZFC. The following four independence results are also due to Gödel/Cohen.);

  4. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    The Riemann hypothesis is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise. Although it has been attacked by major mathematicians of our day, many experts believe that it will still be part of unsolved problems lists for many ...

  5. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . [ 1 ] [ 2 ] Georg Cantor proved that the cardinality c {\displaystyle {\mathfrak {c}}} is larger than the smallest infinity, namely, ℵ 0 {\displaystyle \aleph _{0}} .

  6. List of continuity-related mathematical topics - Wikipedia

    en.wikipedia.org/wiki/List_of_continuity-related...

    Linear continuum, any ordered set that shares certain properties of the real line; Continuum (topology), a nonempty compact connected metric space (sometimes a Hausdorff space) Continuum hypothesis, a conjecture of Georg Cantor that there is no cardinal number between that of countably infinite sets and the cardinality of the set of all real ...

  7. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    In fact, for every nonzero natural number n, the equality = is independent of ZFC (case = being the continuum hypothesis). The same is true for most other alephs, although in some cases, equality can be ruled out by König's theorem on the grounds of cofinality (e.g. c ≠ ℵ ω {\displaystyle {\mathfrak {c}}\neq \aleph _{\omega }} ).

  8. Model theory - Wikipedia

    en.wikipedia.org/wiki/Model_theory

    The model-theoretic viewpoint has been useful in set theory; for example in Kurt Gödel's work on the constructible universe, which, along with the method of forcing developed by Paul Cohen can be shown to prove the (again philosophically interesting) independence of the axiom of choice and the continuum hypothesis from the other axioms of set ...

  9. Set theory of the real line - Wikipedia

    en.wikipedia.org/wiki/Set_theory_of_the_real_line

    Set theory of the real line is an area of mathematics concerned with the application of set theory to aspects of the real numbers.. For example, one knows that all countable sets of reals are null, i.e. have Lebesgue measure 0; one might therefore ask the least possible size of a set which is not Lebesgue null.