When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  3. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ...

  4. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  5. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    E max = FE H −7F H = 127; Exponent bias = 7F H = 127; Thus, in order to get the true exponent as defined by the offset-binary representation, the offset of 127 has to be subtracted from the value of the exponent field. The minimum and maximum values of the exponent field (00 H and FF H) are interpreted specially, like in the IEEE 754 standard ...

  6. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    The minimum strictly positive (subnormal) value is 2 −16494 ≈ 10 −4965 and has a precision of only one bit. The minimum positive normal value is 2 −16382 ≈ 3.3621 × 10 −4932 and has a precision of 113 bits, i.e. ±2 −16494 as well. The maximum representable value is 2 16384 − 2 16271 ≈ 1.1897 × 10 4932.

  7. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    Its integer part is the largest exponent shown on the output of a value in scientific notation with one leading digit in the significand before the decimal point (e.g. 1.698·10 38 is near the largest value in binary32, 9.999999·10 96 is the largest value in decimal32).

  8. Octuple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Octuple-precision_floating...

    The minimum strictly positive (subnormal) value is 2 −262378 ≈ 10 −78984 and has a precision of only one bit. The minimum positive normal value is 2 −262142 ≈ 2.4824 × 10 −78913. The maximum representable value is 2 262144 − 2 261907 ≈ 1.6113 × 10 78913.

  9. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).