Search results
Results From The WOW.Com Content Network
Bacteria have a system that allows tetracyclines to be transported into the cell, whereas human cells do not. Human cells therefore are spared the effects of tetracycline on protein synthesis. [1] Tetracyclines retain an important role in medicine, although their usefulness has been reduced with the onset of antibiotic resistance. [2]
TetR dimerizes by making hydrophobic contacts within the regulatory core. There is a binding cavity for tetracycline in the outer helices of the regulatory domain. When tetracycline binds this cavity, it causes a conformational change that affects the DNA-binding domain so that TetR is no longer able to bind DNA.
Tetracycline-controlled gene expression is based upon the mechanism of resistance to tetracycline antibiotic treatment found in gram-negative bacteria. In nature, the P tet promoter expresses TetR (the repressor ) and TetA, the protein that pumps tetracycline antibiotic out of the cell.
It works by inhibiting protein synthesis in bacteria. [3] Tetracycline was patented in 1953 [6] and was approved for prescription use in 1954. [7] [8] It is on the World Health Organization's List of Essential Medicines. [9] Tetracycline is available as a generic medication. [3] Tetracycline was originally made from bacteria of the genus ...
Narrow-spectrum antibiotics have low propensity to induce bacterial resistance and are less likely to disrupt the microbiome (normal microflora). [3] On the other hand, indiscriminate use of broad-spectrum antibiotics may not only induce the development of bacterial resistance and promote the emergency of multidrug-resistant organisms, but also cause off-target effects due to dysbiosis.
Oxytetracycline, like other tetracyclines, is used to treat many infections, both common and rare.Its better absorption profile makes it preferable to tetracycline for moderately severe acne at a dosage of 250–500 mg four times a day for usually six to eight weeks at a time, but alternatives should be sought if no improvement occurs by three months.
The microbial food web refers to the combined trophic interactions among microbes in aquatic environments. These microbes include viruses, bacteria, algae, heterotrophic protists (such as ciliates and flagellates). [1] In aquatic ecosystems, microbial food webs are essential because they form the basis for the cycling of nutrients and energy.
Bacteriophages, also known as phages, infect and kill bacteria primarily during lytic cycles. [ 202 ] [ 201 ] Phages insert their DNA into the bacterium, where it is transcribed and used to make new phages, after which the cell will lyse, releasing new phage that are able to infect and destroy further bacteria of the same strain. [ 201 ]