When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  3. Point-blank range - Wikipedia

    en.wikipedia.org/wiki/Point-blank_range

    Maximum point-blank range is principally a function of a cartridge's external ballistics and target size: high-velocity rounds have long point-blank ranges, while slow rounds have much shorter point-blank ranges. Target size determines how far above and below the line of sight a projectile's trajectory may deviate.

  4. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.

  5. Local boundedness - Wikipedia

    en.wikipedia.org/wiki/Local_boundedness

    Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:

  6. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The set S obviously contains a, and is bounded by b by construction. By the least-upper-bound property, S has a least upper bound c ∈ [ a , b ] . Hence, c is itself an element of some open set U α , and it follows for c < b that [ a , c + δ ] can be covered by finitely many U α for some sufficiently small δ > 0 .

  7. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  8. Bounded set - Wikipedia

    en.wikipedia.org/wiki/Bounded_set

    A subset S of a metric space (M, d) is bounded if there exists r > 0 such that for all s and t in S, we have d(s, t) < r. The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent.

  9. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...