Search results
Results From The WOW.Com Content Network
Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.
[6] [7] [8] Gay-Lussac primarily investigated the relationship between volume and temperature and published it in 1802, but his work did cover some comparison between pressure and temperature. [9] Given the relative technology available to both men, Amontons could only work with air as a gas, whereas Gay-Lussac was able to experiment with ...
Vertical pressure variation is the variation in pressure as a function of elevation.Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
where is the initial density and / denotes the derivative of pressure with respect to density. The inverse of the bulk modulus gives a substance's compressibility . Generally the bulk modulus is defined at constant temperature as the isothermal bulk modulus, but can also be defined at constant entropy as the adiabatic bulk modulus.
The density of a gas at a specific pressure can be estimated by using the ideal gas law. Doubling absolute pressure doubles the density of a gas, and doubling absolute temperature halves the density. The number of molecules in a given gas volume depends on the pressure and temperature. This is why the pressure and temperature must be stated in ...
vapour density = molar mass of gas / molar mass of H 2 vapour density = molar mass of gas / 2.01568 vapour density = 1 ⁄ 2 × molar mass (and thus: molar mass = ~2 × vapour density) For example, vapour density of mixture of NO 2 and N 2 O 4 is 38.3. Vapour density is a dimensionless quantity. Vapour density = density of gas / density of ...
The potential density of a fluid parcel at pressure is the density that the parcel would acquire if adiabatically brought to a reference pressure , often 1 bar (100 kPa). Whereas density changes with changing pressure, potential density of a fluid parcel is conserved as the pressure experienced by the parcel changes (provided no mixing with ...