When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For an object to be in static equilibrium, not only must the sum of the forces be zero, but also the sum of the torques (moments) about any point. For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: Σ H = 0 and Σ V = 0 , and the torque a third equation: Σ τ = 0 .

  3. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...

  4. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga , so long as the sculpture or stack of blocks is not in the state of ...

  5. Mechanical advantage device - Wikipedia

    en.wikipedia.org/wiki/Mechanical_advantage_device

    Lever: The beam shown is in static equilibrium around the fulcrum. This is due to the moment created by vector force "A" counterclockwise (moment A*a) being in equilibrium with the moment created by vector force "B" clockwise (moment B*b). The relatively low vector force "B" is translated in a relatively high vector force "A".

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Mechanical power; Mechanical work; Moment; Momentum; ... of the constraint on the particle at a given moment. [7] ... to understand static equilibrium, ...

  7. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  8. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    Consider a column of water in hydrostatic equilibrium. All the forces on the water are in balance and the water is motionless. On any given drop of water, two forces are balanced. The first is gravity, which acts directly on each atom and molecule inside. The gravitational force per unit volume is ρg, where g is the gravitational acceleration ...

  9. Virtual work - Wikipedia

    en.wikipedia.org/wiki/Virtual_work

    Static equilibrium is a state in which the net force and net torque acted upon the system is zero. In other words, both linear momentum and angular momentum of the system are conserved. The principle of virtual work states that the virtual work of the applied forces is zero for all virtual movements of the system from static equilibrium.