When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; [4] and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. [5]

  3. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In his highly influential book Statistical Methods for Research Workers (1925), Fisher proposed the level p = 0.05, or a 1 in 20 chance of being exceeded by chance, as a limit for statistical significance, and applied this to a normal distribution (as a two-tailed test), thus yielding the rule of two standard deviations (on a normal ...

  4. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors ...

  5. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The solution to this question would be to report the p-value or significance level α of the statistic. For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0.

  6. False positive rate - Wikipedia

    en.wikipedia.org/wiki/False_positive_rate

    The choice of a significance level may thus be somewhat arbitrary (i.e. setting 10% (0.1), 5% (0.05), 1% (0.01) etc.) As opposed to that, the false positive rate is associated with a post-prior result, which is the expected number of false positives divided by the total number of hypotheses under the real combination of true and non-true null ...

  7. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    [13] [14] [15] The apparent contradiction stems from the combination of a discrete statistic with fixed significance levels. [16] [17] Consider the following proposal for a significance test at the 5%-level: reject the null hypothesis for each table to which Fisher's test assigns a p-value equal to or smaller than 5%. Because the set of all ...

  8. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    A 95% confidence level does not mean that 95% of the sample data lie within the confidence interval. A 95% confidence level does not mean that there is a 95% probability of the parameter estimate from a repeat of the experiment falling within the confidence interval computed from a given experiment. [25]

  9. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level.