Search results
Results From The WOW.Com Content Network
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. [ 1 ] [ 2 ] Viruses have short generation times, and many—in particular RNA viruses —have relatively high mutation rates (on the order of one point mutation or more per genome per round of replication).
The viral eukaryogenesis hypothesis posits that eukaryotes are composed of three ancestral elements: a viral component that became the modern nucleus; a prokaryotic cell (an archaeon according to the eocyte hypothesis) which donated the cytoplasm and cell membrane of modern cells; and another prokaryotic cell (here bacterium) that, by endocytosis, became the modern mitochondrion or chloroplast.
New groups of viruses might have repeatedly emerged at all stages of the evolution of life. [16] There are three major theories about the origins of viruses: [16] [17] Regressive theory Viruses may have once been small cells that parasitised larger cells. Eventually, the genes they no longer needed for a parasitic way of life were lost.
The viral genome is then known as a "provirus" or, in the case of bacteriophages a "prophage". [13]: 836 Whenever the host divides, the viral genome is also replicated. The viral genome is mostly silent within the host. At some point, the provirus or prophage may give rise to the active virus, which may lyse the host cells.
Gamma phage, an example of virus particles (visualised by electron microscopy) Virology is the scientific study of biological viruses.It is a subfield of microbiology that focuses on their detection, structure, classification and evolution, their methods of infection and exploitation of host cells for reproduction, their interaction with host organism physiology and immunity, the diseases they ...
[3] The organism used is decided by the experimenter, based on the hypothesis to be tested. Many generations are required for adaptive mutation to occur, and experimental evolution via mutation is carried out in viruses or unicellular organisms with rapid generation times, such as bacteria and asexual clonal yeast.
The discovery could help protect endangered species. For premium support please call: 800-290-4726 more ways to reach us
While short-term (for example, intra-host) evolution is observable and measurable, viruses may appear to be relatively static in the long term for decades (as seen with antigenic variants of FMDV [102]) or longer. Intra-host evolution is generally more rapid than inter-host evolution, as documented with viruses [10] and other biological systems ...