Search results
Results From The WOW.Com Content Network
Both of these are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation. Moreover, a preorder on a set X {\displaystyle X} can equivalently be defined as an equivalence relation on X {\displaystyle X} , together with a partial order on the set of equivalence class.
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
Preorders, a generalization of partial orders allowing ties (represented as equivalences and distinct from incomparabilities) Semiorders, partial orders determined by comparison of numerical values, in which values that are too close to each other are incomparable; a subfamily of partial orders with certain restrictions
The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals.
Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.
In the case of a total preorder the corresponding partial order on the set of equivalence classes is a total order. Two elements are equivalent in a total preorder if and only if they are incomparable in the corresponding strict weak ordering.
A preorder is a reflexive and transitive relation. The difference between a preorder and a partial-order is that a preorder allows two different items to be considered "equivalent", that is, both and hold, while a partial-order allows this only when =.
One may take this relation as a definition of the natural operations by choosing S and T to be ordinals α and β; so α ⊕ β is the maximum order type of a total order extending the disjoint union (as a partial order) of α and β; while α ⊗ β is the maximum order type of a total order extending the direct product (as a partial order) of ...