Search results
Results From The WOW.Com Content Network
For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix []. That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b 1, b 2 such that Nb 1 = 0 and Nb 2 = b 1. This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)
If a, b, c, are real numbers (in the ring R), then one has the continuous Heisenberg group H 3 (R).. It is a nilpotent real Lie group of dimension 3.. In addition to the representation as real 3×3 matrices, the continuous Heisenberg group also has several different representations in terms of function spaces.
Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with n = 2 {\displaystyle n=2} ). Both are linked, also through supersymmetry and Morse theory , [ 6 ] as shown by Edward Witten in a celebrated article.
The Jordan block corresponding to λ is of the form λI + N, where N is a nilpotent matrix defined as N ij = δ i,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the ...
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .
The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = = for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...
There is also a real Schur decomposition. If A is an n × n square matrix with real entries, then A can be expressed as [4] = where Q is an orthogonal matrix and H is either upper or lower quasi-triangular. A quasi-triangular matrix is a matrix that when expressed as a block matrix of 2 × 2 and 1 × 1 blocks is
The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that T n f ≠ 0 (in the sense of L 2) for all n. However, T is quasinilpotent. First notice that K is in L 2 (X, m), therefore T is compact. By the spectral properties of compact operators, any nonzero λ in σ(T) is an eigenvalue.