Search results
Results From The WOW.Com Content Network
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable x {\displaystyle x} is denoted exp x {\displaystyle \exp x} or e x {\displaystyle e^{x}} , with the two notations used interchangeably.
The exponential function = ... The first-order Taylor polynomial is the linear approximation of the function, ... if one aims to prove the claim in the case ...
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
One could also define both the second constant coefficient and the second function to be 0, where the domain of the second function is a superset of the first function, among other possibilities.) On the contrary, if we first prove the constant factor rule and the sum rule, we can prove linearity and the difference rule.
The exponential shift theorem can be used to speed the calculation of higher derivatives of functions that is given by the product of an exponential and another function. For instance, if f ( x ) = sin ( x ) e x {\displaystyle f(x)=\sin(x)e^{x}} , one has that
With exponential functions, increasing the input by one unit causes the output to increase by a fixed multiple, which is known as the base of the exponential function. If both arguments and values of a function are in the logarithmic scale (i.e., when log(y) is a linear function of log(x)), then the straight line represents a power law:
The function is named after Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the W function per se in 1783. [citation needed] For each integer k there is one branch, denoted by W k (z), which is a complex-valued function of one complex argument. W 0 is known as the principal branch.