Search results
Results From The WOW.Com Content Network
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
The sampling theory of Shannon can be generalized for the case of nonuniform sampling, that is, samples not taken equally spaced in time. The Shannon sampling theory for non-uniform sampling states that a band-limited signal can be perfectly reconstructed from its samples if the average sampling rate satisfies the Nyquist condition. [5]
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
Though any number of quantization levels is possible, common word lengths are 8-bit (256 levels), 16-bit (65,536 levels) and 24-bit (16.8 million levels). Quantizing a sequence of numbers produces a sequence of quantization errors which is sometimes modeled as an additive random signal called quantization noise because of its stochastic ...
And it turns out that one can directly achieve the same result by sampling the bandpass function at a sub-Nyquist sample-rate that is the smallest integer-sub-multiple of frequency A that meets the baseband Nyquist criterion: f s > 2B. For a more general discussion, see bandpass sampling.
The sampling theory of Shannon can be generalized for the case of nonuniform samples, that is, samples not taken equally spaced in time. The Shannon sampling theory for non-uniform sampling states that a band-limited signal can be perfectly reconstructed from its samples if the average sampling rate satisfies the Nyquist condition. [1]
Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example. The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal.
In signal processing, oversampling is the process of sampling a signal at a sampling frequency significantly higher than the Nyquist rate. Theoretically, a bandwidth-limited signal can be perfectly reconstructed if sampled at the Nyquist rate or above it. The Nyquist rate is defined as twice the bandwidth of the signal.