Search results
Results From The WOW.Com Content Network
The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid. [1] [2]
The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. [1] The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899. [1] Baeyer-Villiger oxidation
The result is a rate of ketone production higher than the rate of ketone disposal, and a decrease in blood pH. [12] In extreme cases the resulting acetone can be detected in the patient's breath as a faint, sweet odor. There are some health benefits to ketone bodies and ketogenesis as well.
The predominant driving force for this face-selective, intramolecular hydride transfer is the simultaneous activation of the borane reagent by coordination to the Lewis basic nitrogen and the enhancement of the Lewis acidity of the endocyclic boron atom for coordination to the ketone. [5]
The reaction involves migration of a proton (H) from carbon to oxygen: [1] RC(=O)C H R′R′′ ⇌ RC(O H )=CR′R′′ In the case of ketones, the conversion is called a keto-enol tautomerism, although this name is often more generally applied to all such tautomerizations.
A primary kinetic isotope effect (PKIE) may be found when a bond to the isotopically labeled atom is being formed or broken. [3] [4]: 427 Depending on the way a KIE is probed (parallel measurement of rates vs. intermolecular competition vs. intramolecular competition), the observation of a PKIE is indicative of breaking/forming a bond to the isotope at the rate-limiting step, or subsequent ...
Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.
The reaction is named after Russian organic chemist Vyacheslav Tishchenko, who discovered that aluminium alkoxides are effective catalysts for the reaction. [1] [2] [3] In the related Cannizzaro reaction, the base is sodium hydroxide and then the oxidation product is a carboxylic acid and the reduction product is an alcohol.