Search results
Results From The WOW.Com Content Network
The p-chart only accommodates "pass"/"fail"-type inspection as determined by one or more go-no go gauges or tests, effectively applying the specifications to the data before they are plotted on the chart. Other types of control charts display the magnitude of the quality characteristic under study, making troubleshooting possible directly from ...
antiproton, a fundamental particle, its symbol is ¯, "p-bar" Topics referred to by the same term This disambiguation page lists articles associated with the title Pbar .
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
It is ubiquitous in nature and statistics due to the central limit theorem: every variable that can be modelled as a sum of many small independent, identically distributed variables with finite mean and variance is approximately normal. The normal-exponential-gamma distribution; The normal-inverse Gaussian distribution
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
The antiproton, p, (pronounced p-bar) is the antiparticle of the proton.Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.