Search results
Results From The WOW.Com Content Network
Five definitions of the beam width are in common use: D4σ, 10/90 or 20/80 knife-edge, 1/e 2, FWHM, and D86. The beam width can be measured in units of length at a particular plane perpendicular to the beam axis, but it can also refer to the angular width, which is the angle subtended by the beam at the source.
A 'polar' diagram showing beamwidth In antennas, the expression half-power point does not relate to frequency: instead, it describes the extent in space of an antenna beam. The half-power point is the angle off boresight at which the antenna gain first falls to half power (approximately −3 dB ) [ a ] from the peak.
In a radio antennas, the main lobe or main beam is the region of the radiation pattern containing the highest power or exhibiting the greatest field strength.. The radiation pattern of most antennas shows a pattern of "lobes" at various directions, where the radiated signal strength reaches a local maximum, separated by "nulls", at which the radiation falls to zero.
The graphs can be drawn using Cartesian (rectangular) coordinates or a polar plot. This last one is useful to measure the beamwidth, which is, by convention, the angle at the −3dB points around the max gain. The shape of curves can be very different in Cartesian or polar coordinates and with the choice of the limits of the logarithmic scale.
The angular width of the beam radiated by high-gain antennas is measured by the half-power beam width (HPBW), which is the angular separation between the points on the antenna radiation pattern at which the power drops to one-half (-3 dB) its maximum value.
For a linearly-polarized antenna, this is the plane containing the electric field vector (sometimes called the E aperture) and the direction of maximum radiation. The electric field or "E" plane determines the polarization or orientation of the radio wave.
The axis of maximum radiation, passing through the center of the main lobe, is called the "beam axis" or boresight axis". In some antennas, such as split-beam antennas, there may exist more than one major lobe. The other lobes beside the main lobe, representing unwanted radiation in other directions, are called minor lobes.
Most antennas boresight axis is fixed by their shape and cannot be changed. However phased array antennas can electronically steer the beam, changing the angle of the boresight by shifting the relative phase of the radio waves emitted by different antenna elements, and even radiate beams in multiple directions (multiple boresights). [1]