Search results
Results From The WOW.Com Content Network
Vaporization (or vapo(u)risation) of an element or compound is a phase transition from the liquid phase to vapor. [1] There are two types of vaporization: evaporation and boiling . Evaporation is a surface phenomenon , whereas boiling is a bulk phenomenon (a phenomenon in which the whole object or substance is involved in the process).
The increase in the internal energy can be viewed as the energy required to overcome the intermolecular interactions in the liquid (or solid, in the case of sublimation). Hence helium has a particularly low enthalpy of vaporization, 0.0845 kJ/mol, as the van der Waals forces between helium atoms are particularly weak.
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. [1]
Rolling boil of water in an electric kettle. Boiling or ebullition is the rapid phase transition from liquid to gas or vapour; the reverse of boiling is condensation.Boiling occurs when a liquid is heated to its boiling point, so that the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere.
Phase transitions commonly refer to when a substance transforms between one of the four states of matter to another. At the phase transition point for a substance, for instance the boiling point, the two phases involved - liquid and vapor, have identical free energies and therefore are equally likely to exist.
The rate of evaporation in an open system is related to the vapor pressure found in a closed system. If a liquid is heated, when the vapor pressure reaches the ambient pressure the liquid will boil. The ability for a molecule of a liquid to evaporate is based largely on the amount of kinetic energy an individual particle may possess. Even at ...
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.
where is the heat or enthalpy of vaporization. Since this is a thermodynamic equation, the symbol refers to the absolute thermodynamic temperature, measured in kelvins (K). The entropy of vaporization is then equal to the heat of vaporization divided by the boiling point: [2] [3]