Search results
Results From The WOW.Com Content Network
The boundary of an -manifold with boundary is an ()-manifold. A disk (circle plus interior) is a 2-manifold with boundary. Its boundary is a circle, a 1-manifold. A square with interior is also a 2-manifold with boundary. A ball (sphere plus interior) is a 3-manifold with boundary. Its boundary is a sphere, a 2-manifold.
A boundary point of a set is any element of that set's boundary. The boundary defined above is sometimes called the set's topological boundary to distinguish it from other similarly named notions such as the boundary of a manifold with boundary or the boundary of a manifold with corners, to name just a few examples.
More generally, one can define homology manifolds with boundary, by allowing the local homology groups to vanish at some points, which are of course called the boundary of the homology manifold. The boundary of an n-dimensional first-countable homology manifold is an n−1 dimensional homology manifold (without boundary).
The surface S is said to be boundary-compressible if either S is a disk that cobounds a ball with a disk in or there exists a boundary-compressing disk for S in M. Otherwise, S is boundary-incompressible. Alternatively, one can relax this definition by dropping the requirement that the surface be properly embedded.
Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. [1] However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.
The boundary of a manifold is a manifold , which has dimension . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} . We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .
In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth four-dimensional manifold-with-boundary which is not diffeomorphic to the standard 4-ball. Usually these manifolds are further required to have a handle decomposition with a single 1 {\displaystyle 1} -handle, and a single 2 {\displaystyle 2 ...