When.com Web Search

  1. Ads

    related to: dual curve in geometry examples worksheet 1 answers key

Search results

  1. Results From The WOW.Com Content Network
  2. Dual curve - Wikipedia

    en.wikipedia.org/wiki/Dual_curve

    If the degree of the curve is d then the degree of the polar is d − 1 and so the number of tangents that can be drawn through the given point is at most d(d − 1). The dual of a line (a curve of degree 1) is an exception to this and is taken to be a point in the dual space (namely the original line).

  3. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    These sets can be used to define a plane dual structure. Interchange the role of "points" and "lines" in C = (P, L, I) to obtain the dual structure. C ∗ = (L, P, I ∗), where I ∗ is the converse relation of I. C ∗ is also a projective plane, called the dual plane of C. If C and C ∗ are isomorphic, then C is called self-dual.

  4. Glossary of classical algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_classical...

    dual 1. The dual of a projective space is the set of hyperplanes, considered as another projective space. 2. The dual curve of a plane curve is the set of its tangent lines, considered as a curve in the dual projective plane. 3. A dual number is a number of the form a+εb where ε has square 0. Semple & Roth (1949, p.268)

  5. List of dualities - Wikipedia

    en.wikipedia.org/wiki/List_of_dualities

    In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.

  6. Plücker formula - Wikipedia

    en.wikipedia.org/wiki/Plücker_formula

    A curve in this context is defined by a non-degenerate algebraic equation in the complex projective plane. Lines in this plane correspond to points in the dual projective plane and the lines tangent to a given algebraic curve C correspond to points in an algebraic curve C * called the dual curve.

  7. Desargues's theorem - Wikipedia

    en.wikipedia.org/wiki/Desargues's_theorem

    Under the standard duality of plane projective geometry (where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration.

  8. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  9. Dual graph - Wikipedia

    en.wikipedia.org/wiki/Dual_graph

    Therefore, the dual graph of the n-cycle is a multigraph with two vertices (dual to the regions), connected to each other by n dual edges. Such a graph is called a multiple edge, linkage, or sometimes a dipole graph. Conversely, the dual to an n-edge dipole graph is an n-cycle. [1]