Ads
related to: dual curve in geometry examples worksheet 1 answers keystudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
If the degree of the curve is d then the degree of the polar is d − 1 and so the number of tangents that can be drawn through the given point is at most d(d − 1). The dual of a line (a curve of degree 1) is an exception to this and is taken to be a point in the dual space (namely the original line).
These sets can be used to define a plane dual structure. Interchange the role of "points" and "lines" in C = (P, L, I) to obtain the dual structure. C ∗ = (L, P, I ∗), where I ∗ is the converse relation of I. C ∗ is also a projective plane, called the dual plane of C. If C and C ∗ are isomorphic, then C is called self-dual.
dual 1. The dual of a projective space is the set of hyperplanes, considered as another projective space. 2. The dual curve of a plane curve is the set of its tangent lines, considered as a curve in the dual projective plane. 3. A dual number is a number of the form a+εb where ε has square 0. Semple & Roth (1949, p.268)
In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.
A curve in this context is defined by a non-degenerate algebraic equation in the complex projective plane. Lines in this plane correspond to points in the dual projective plane and the lines tangent to a given algebraic curve C correspond to points in an algebraic curve C * called the dual curve.
Under the standard duality of plane projective geometry (where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration.
The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]
Therefore, the dual graph of the n-cycle is a multigraph with two vertices (dual to the regions), connected to each other by n dual edges. Such a graph is called a multiple edge, linkage, or sometimes a dipole graph. Conversely, the dual to an n-edge dipole graph is an n-cycle. [1]