Search results
Results From The WOW.Com Content Network
Maximum point-blank range is principally a function of a cartridge's external ballistics and target size: high-velocity rounds have long point-blank ranges, while slow rounds have much shorter point-blank ranges. Target size determines how far above and below the line of sight a projectile's trajectory may deviate.
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.
In other words, all the functions in the family must be locally bounded, and around each point they need to be bounded by the same constant. This definition can also be extended to the case when the functions in the family U take values in some metric space, by again replacing the absolute value with the distance function.
A densely defined symmetric [clarification needed] operator T on a Hilbert space H is called bounded from below if T + a is a positive operator for some real number a. That is, Tx|x ≥ −a ||x|| 2 for all x in the domain of T (or alternatively Tx|x ≥ a ||x|| 2 since a is arbitrary). [8] If both T and −T are bounded from below then T is ...
The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...
A subset S of a metric space (M, d) is bounded if there exists r > 0 such that for all s and t in S, we have d(s, t) < r. The metric space (M, d) is a bounded metric space (or d is a bounded metric) if M is bounded as a subset of itself. Total boundedness implies boundedness. For subsets of R n the two are equivalent.
Bounded region is defined similarly. An exterior domain or external domain is a domain whose complement is bounded; sometimes smoothness conditions are imposed on its boundary. In complex analysis , a complex domain (or simply domain ) is any connected open subset of the complex plane C .