Search results
Results From The WOW.Com Content Network
The number on the left hand side of a given row is the Bell number for that row. ( B i ← x i , 1 {\displaystyle B_{i}\leftarrow x_{i,1}} ) Here are the first five rows of the triangle constructed by these rules:
A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve. These functions are typically continuous or smooth, asymptotically approach zero for large negative/positive x, and have a single, unimodal maximum at small x. Hence, the integral of a bell-shaped function is typically a sigmoid ...
The ordered Bell numbers were studied in the 19th century by Arthur Cayley and William Allen Whitworth. They are named after Eric Temple Bell, who wrote about the Bell numbers, which count the partitions of a set; the ordered Bell numbers count partitions that have been equipped with a total order.
Other free energy can be a function of other variables such as the magnetic field or chemical potential , e.g. = ( ), where N is the number of particles and is the grand potential. Again the close relationship between the definition of the free energy and the cumulant generating function implies that various derivatives of this free ...
In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell . Given an arithmetic function f {\displaystyle f} and a prime p {\displaystyle p} , define the formal power series f p ( x ) {\displaystyle f_{p}(x)} , called the Bell series ...
The use of exponential generating functions (EGFs) to study the properties of Stirling numbers is a classical exercise in combinatorial mathematics and possibly the canonical example of how symbolic combinatorics is used. It also illustrates the parallels in the construction of these two types of numbers, lending support to the binomial-style ...
can be proved by the techniques at Stirling numbers and exponential generating functions#Stirling numbers of the first kind and Binomial coefficient#Ordinary generating functions. The table in section 6.1 of Concrete Mathematics provides a plethora of generalized forms of finite sums involving the Stirling numbers. Several particular finite ...
These numbers are also called the Fubini numbers or ordered Bell numbers. For example, for a set of three labeled items, there is one weak order in which all three items are tied.