Search results
Results From The WOW.Com Content Network
For that reason, we refer to these functions as (STRUCTURALLY) RECURSIVE FUNCTIONS. — Felleisen, Findler, Flatt, and Krishnaurthi, How to Design Programs , 2001 [ 6 ] Thus, the defining characteristic of a structurally recursive function is that the argument to each recursive call is the content of a field of the original input.
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .
But if this equals some primitive recursive function, there is an m such that h(n) = f(m,n) for all n, and then h(m) = f(m,m), leading to contradiction. However, the set of primitive recursive functions is not the largest recursively enumerable subset of the set of all total recursive functions. For example, the set of provably total functions ...
Recursive function may refer to: Recursive function (programming), a function which references itself; General recursive function, a computable partial function from natural numbers to natural numbers Primitive recursive function, a function which can be computed with loops of bounded length; Another name for computable function
In computer science and recursion theory the McCarthy Formalism (1963) of computer scientist John McCarthy clarifies the notion of recursive functions by use of the IF-THEN-ELSE construction common to computer science, together with four of the operators of primitive recursive functions: zero, successor, equality of numbers and composition.
The Ackermann function, due to its definition in terms of extremely deep recursion, can be used as a benchmark of a compiler's ability to optimize recursion. The first published use of Ackermann's function in this way was in 1970 by DragoČ™ Vaida [27] and, almost simultaneously, in 1971, by Yngve Sundblad. [14]
This mutually recursive definition can be converted to a singly recursive definition by inlining the definition of a forest: t: v [t[1], ..., t[k]] A tree t consists of a pair of a value v and a list of trees (its children). This definition is more compact, but somewhat messier: a tree consists of a pair of one type and a list another, which ...