When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each sample is only considered out-of-bag for the trees that do not include it in their bootstrap sample.

  3. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forest dissimilarity easily deals with a large number of semi-continuous variables due to its intrinsic variable selection; for example, the "Addcl 1" random forest dissimilarity weighs the contribution of each variable according to how dependent it is on other variables.

  4. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In some classification problems, when random forest is used to fit models, jackknife estimated variance is defined as: ... while predictions made by m=5 random forest ...

  5. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Bayesian model averaging (BMA) makes predictions by averaging the predictions of models weighted by their posterior probabilities given the data. [22] BMA is known to generally give better answers than a single model, obtained, e.g., via stepwise regression , especially where very different models have nearly identical performance in the ...

  6. Boosting (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Boosting_(machine_learning)

    Robert Schapire answered the question in the affirmative in a paper published in 1990. [5] This has had significant ramifications in machine learning and statistics, most notably leading to the development of boosting. [6] Initially, the hypothesis boosting problem simply referred to the process of turning a weak learner into a strong learner. [3]

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity, the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train the model. In general, as we increase the number of tunable parameters in a model, it becomes more ...

  9. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".