Search results
Results From The WOW.Com Content Network
Example of a regular grid. A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). [1] Its opposite is irregular grid.. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces.
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system [8]) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning ...
The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r, polar angle θ , and azimuthal angle φ . The symbol ρ is often used instead of r.
The grid is rectangular, with a set number of orthogonal coordinates (usually latitude and longitude). At a given latitude (or parallel), the gridpoints are equally spaced. On the contrary along a longitude (or meridian) the gridpoints are unequally spaced. The spacing between grid points is defined by Gaussian quadrature.
While one might describe the motion of a particle in a rectangular box using Cartesian coordinates, it is easier to describe the motion in a sphere with spherical coordinates. Spherical coordinates are the most common curvilinear coordinate systems and are used in Earth sciences, cartography, quantum mechanics, relativity, and engineering.
The physics convention. Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.
A rectangular grid (top) and its image under a conformal map (bottom). It is seen that f {\displaystyle f} maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°. Mathematical analysis → Complex analysis