When.com Web Search

  1. Ad

    related to: the axioms of set theory

Search results

  1. Results From The WOW.Com Content Network
  2. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.

  3. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  4. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of Principia Mathematica, it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first or second-order logic.

  5. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    Classes have several uses in NBG: They produce a finite axiomatization of set theory. [4]They are used to state a "very strong form of the axiom of choice" [5] —namely, the axiom of global choice: There exists a global choice function defined on the class of all nonempty sets such that () for every nonempty set .

  6. Axiom of infinity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_infinity

    In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908. [1]

  7. Axiom schema of specification - Wikipedia

    en.wikipedia.org/wiki/Axiom_schema_of_specification

    The axiom schema of specification is characteristic of systems of axiomatic set theory related to the usual set theory ZFC, but does not usually appear in radically different systems of alternative set theory. For example, New Foundations and positive set theory use different restrictions of the axiom of comprehension of naive set theory.

  8. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...

  9. Axiom of regularity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_regularity

    Naive set theory (the axiom schema of unrestricted comprehension and the axiom of extensionality) is inconsistent due to Russell's paradox. In early formalizations of sets, mathematicians and logicians have avoided that contradiction by replacing the axiom schema of comprehension with the much weaker axiom schema of separation .