Search results
Results From The WOW.Com Content Network
If the second derivative of a function changes sign, the graph of the function will switch from concave down to concave up, or vice versa. A point where this occurs is called an inflection point. Assuming the second derivative is continuous, it must take a value of zero at any inflection point, although not every point where the second ...
The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph .
A related but distinct use of second derivatives is to determine whether a function is concave up or concave down at a point. It does not, however, provide information about inflection points . Specifically, a twice-differentiable function f is concave up if f ″ ( x ) > 0 {\displaystyle f''(x)>0} and concave down if f ″ ( x ) < 0 ...
For a function f, if its second derivative f″(x) exists at x 0 and x 0 is an inflection point for f, then f″(x 0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third ...
Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x 2 /2 is a concave function of x. But f is not concave since the second derivative is positive for | x | > 1:
The specific nature of a stationary point at x can in some cases be determined by examining the second derivative f″(x): If f″(x) < 0, the stationary point at x is concave down; a maximal extremum. If f″(x) > 0, the stationary point at x is concave up; a minimal extremum.
A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap or upper convex. constant of integration The indefinite integral of a given function (i.e., the set of all antiderivatives of the function) on a connected domain is only defined up to an additive constant, the constant of integration .