Search results
Results From The WOW.Com Content Network
is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b. Any series that is not convergent is said to be divergent or to diverge.
For example, the sum of 1/n where n has at most one 9, is a convergent series. But the sum of 1/n where n has no 9 is convergent. Therefore, the sum of 1/n where n has exactly one 9, is also convergent. Baillie [11] showed that the sum of this last series is about 23.04428 70807 47848 31968.
The test works because the space of real numbers and the space of complex numbers (with the metric given by the absolute value) are both complete. From here, the series is convergent if and only if the partial sums:= = are a Cauchy sequence.
In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...
This is also known as the nth root test or Cauchy's criterion.. Let = | |, where denotes the limit superior (possibly ; if the limit exists it is the same value). If r < 1, then the series converges absolutely.
For instance, for Alcuin's version of the problem, =: a camel can carry 30 measures of grain and can travel one leuca while eating a single measure, where a leuca is a unit of distance roughly equal to 2.3 kilometres (1.4 mi). The problem has =: there are 90 measures of grain, enough to supply three trips.
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.
The same definition can be used for series = whose terms are not numbers but rather elements of an arbitrary abelian topological group.In that case, instead of using the absolute value, the definition requires the group to have a norm, which is a positive real-valued function ‖ ‖: + on an abelian group (written additively, with identity element 0) such that: