When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random effects model - Wikipedia

    en.wikipedia.org/wiki/Random_effects_model

    In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model , which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy.

  3. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about estimating fixed effects but about predicting random effects, but the two terms are otherwise equivalent. (This is a bit ...

  4. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix (to do so, one often needs to examine the model adding additional constraints; for example, if the errors follow a time series process, a statistician generally needs some ...

  5. Generalized linear mixed model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_mixed_model

    In statistics, a generalized linear mixed model (GLMM) is an extension to the generalized linear model (GLM) in which the linear predictor contains random effects in addition to the usual fixed effects. [1] [2] [3] They also inherit from generalized linear models the idea of extending linear mixed models to non-normal data.

  6. Panel analysis - Wikipedia

    en.wikipedia.org/wiki/Panel_analysis

    Random effects model is a feasible generalised least squares technique which is asymptotically more efficient than Pooled OLS when time constant attributes are present. Random effects adjusts for the serial correlation which is induced by unobserved time constant attributes.

  7. Fixed effects model - Wikipedia

    en.wikipedia.org/wiki/Fixed_effects_model

    If the random effects assumption holds, the random effects estimator is more efficient than the fixed effects estimator. However, if this assumption does not hold, the random effects estimator is not consistent. The Durbin–Wu–Hausman test is often used to discriminate between the fixed and the random effects models. [8] [9]

  8. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  9. Completely randomized design - Wikipedia

    en.wikipedia.org/wiki/Completely_randomized_design

    The model for the response is , = + + with Y i,j being any observation for which X 1 = i (i and j denote the level of the factor and the replication within the level of the factor, respectively) μ (or mu) is the general location parameter; T i is the effect of having treatment level i