When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial (), then Laguerre's method converges cubically whenever the initial guess, (), is close enough to the root . On the other hand, when x 1 {\displaystyle x_{1}} is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  3. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    So, except for very low degrees, root finding of polynomials consists of finding approximations of the roots. By the fundamental theorem of algebra, a polynomial of degree n has exactly n real or complex roots counting multiplicities. It follows that the problem of root finding for polynomials may be split in three different subproblems;

  4. Wilkinson's polynomial - Wikipedia

    en.wikipedia.org/wiki/Wilkinson's_polynomial

    Wilkinson's polynomial is often used to illustrate the undesirability of naively computing eigenvalues of a matrix by first calculating the coefficients of the matrix's characteristic polynomial and then finding its roots, since using the coefficients as an intermediate step may introduce an extreme ill-conditioning even if the original problem ...

  5. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  6. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes: b 0 is the number of connected components; b 1 is the number of one-dimensional or "circular" holes;

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    To work with a polynomial system whose coefficients belong to a number field, it suffices to consider this generator as a new variable and to add the equation of the generator to the equations of the system. Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers.

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform. This can be seen as a form of polynomial interpolation with harmonic base functions, see trigonometric interpolation and trigonometric polynomial.

  9. Polygon covering - Wikipedia

    en.wikipedia.org/wiki/Polygon_covering

    Just like the vertex cover problem is polynomial for tree graphs but NP-hard for general graphs, the square covering problem is linear for hole-free polygons but NP-hard for general polygons. It is possible to use the linear algorithm to get a 2-approximation; i.e., a covering with at most 2 opt squares, where opt is the number of squares in a ...