Search results
Results From The WOW.Com Content Network
By definition, the change in electrostatic potential energy, U E, of a point charge q that has moved from the reference position r ref to position r in the presence of an electric field E is the negative of the work done by the electrostatic force to bring it from the reference position r ref to that position r.
In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.
Potential energy is the energy by virtue of an object's position relative to other objects. [6] Potential energy is often associated with restoring forces such as a spring or the force of gravity. The action of stretching a spring or lifting a mass is performed by an external force that works against the force field of the potential.
Electrostatic discharge while fueling with gasoline is a present danger at gas stations. [24] Fires have also been started at airports while refueling aircraft with kerosene. New grounding technologies, the use of conducting materials, and the addition of anti-static additives help to prevent or safely dissipate the buildup of static electricity.
Electrical energy is energy related to forces on electrically charged particles and the movement of those particles (often electrons in wires, but not always). This energy is supplied by the combination of current and electric potential (often referred to as voltage because electric potential is measured in volts) that is delivered by a circuit (e.g., provided by an electric power utility).
Many times in the use and calculation of electric and magnetic fields, the approach used first computes an associated potential: the electric potential, , for the electric field, and the magnetic vector potential, A, for the magnetic field. The electric potential is a scalar field, while the magnetic potential is a vector field.
In generic terms, electrochemical potential is the mechanical work done in bringing 1 mole of an ion from a standard state to a specified concentration and electrical potential. According to the IUPAC definition, [4] it is the partial molar Gibbs energy of the substance at the specified electric potential, where the substance is in a specified ...
The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the electrostatic free energy. [13]