When.com Web Search

  1. Ads

    related to: properties of triangles in a circle practice

Search results

  1. Results From The WOW.Com Content Network
  2. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.

  3. Circular triangle - Wikipedia

    en.wikipedia.org/wiki/Circular_triangle

    Circular triangles give the solution to an isoperimetric problem in which one seeks a curve of minimum length that encloses three given points and has a prescribed area. . When the area is at least as large as the circumcircle of the points, the solution is any circle of that area surrounding the poi

  4. Conway circle theorem - Wikipedia

    en.wikipedia.org/wiki/Conway_circle_theorem

    In plane geometry, the Conway circle theorem states that when the sides meeting at each vertex of a triangle are extended by the length of the opposite side, the six endpoints of the three resulting line segments lie on a circle whose centre is the incentre of the triangle. The circle on which these six points lie is called the Conway circle of ...

  5. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    When the outer Soddy circle has positive curvature, both Soddy centers are equal detour points. When the outer Soddy circle has negative curvature, its center is the isoperimetric point: the triangles ABP 2, BCP 2, and CAP 2 have equal perimeter. In geometry, the Soddy circles of a triangle are two circles associated with any triangle in the

  6. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle.

  7. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The center of all rectangular hyperbolas that pass through the vertices of a triangle lies on its nine-point circle. Examples include the well-known rectangular hyperbolas of Keipert, Jeřábek and Feuerbach. This fact is known as the Feuerbach conic theorem. The nine point circle and the 16 tangent circles of the orthocentric system

  8. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The triangle's nine-point circle has half the diameter of the circumcircle. In any given triangle, the circumcenter is always collinear with the centroid and orthocenter. The line that passes through all of them is known as the Euler line. The isogonal conjugate of the circumcenter is the orthocenter.

  9. Polar circle (geometry) - Wikipedia

    en.wikipedia.org/wiki/Polar_circle_(geometry)

    Any two polar circles of two triangles in an orthocentric system are orthogonal. [1]: p. 177 The polar circles of the triangles of a complete quadrilateral form a coaxal system. [1]: p. 179 The most important property of the polar circle is the triangle is self-polar; the polar of each side/point is the opposite side/point.