Search results
Results From The WOW.Com Content Network
The LMTD is a steady-state concept, and cannot be used in dynamic analyses. In particular, if the LMTD were to be applied on a transient in which, for a brief time, the temperature difference had different signs on the two sides of the exchanger, the argument to the logarithm function would be negative, which is not allowable.
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
The first of the cooling load factors used in this method is the CLTD, or the Cooling Load Temperature Difference. This factor is used to represent the temperature difference between indoor and outdoor air with the inclusion of the heating effects of solar radiation. [1] [5] The second factor is the CLF, or the cooling load factor.
Sheppard, W.F. (1897). "On the Calculation of the most Probable Values of Frequency-Constants, for Data arranged according to Equidistant Division of a Scale".
with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.
A more accurate correction factor can be obtained using Knudsen correction. When using nitrogen gas for core plug measurements, the Klinkenberg correction is usually necessary due to the so-called Klinkenberg gas slippage effect. This takes place when the pore space approaches the mean free path of the gas
That is, observed temperatures above 60 °F (or the base temperature used) typically correlate with a correction factor below "1", while temperatures below 60 °F correlate with a factor above "1". This concept lies in the basis for the kinetic theory of matter and thermal expansion of matter , which states as the temperature of a substance ...
Chilton–Colburn J-factor analogy (also known as the modified Reynolds analogy [1]) is a successful and widely used analogy between heat, momentum, and mass transfer.The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same.