When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    A regression model is estimated to predict observed values of a variable based on other variables, and that model is then used to impute values in cases where the value of that variable is missing. In other words, available information for complete and incomplete cases is used to predict the value of a specific variable.

  3. Missing data - Wikipedia

    en.wikipedia.org/wiki/Missing_data

    In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation. Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data. Missing data can occur because of nonresponse: no information is provided for one or more items or for a ...

  4. Breusch–Godfrey test - Wikipedia

    en.wikipedia.org/wiki/Breusch–Godfrey_test

    In R, this test is performed by function bgtest, available in package lmtest. [5] [6] In Stata, this test is performed by the command estat bgodfrey. [7] [8] In SAS, the GODFREY option of the MODEL statement in PROC AUTOREG provides a version of this test. In Python Statsmodels, the acorr_breusch_godfrey function in the module statsmodels.stats ...

  5. Regression dilution - Wikipedia

    en.wikipedia.org/wiki/Regression_dilution

    In general, methods for the structural model require some estimate of the variability of the x variable. This will require repeated measurements of the x variable in the same individuals, either in a sub-study of the main data set, or in a separate data set. Without this information it will not be possible to make a correction.

  6. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    In statistics, propagation of uncertainty (or propagation of error) is the effect of variables' uncertainties (or errors, more specifically random errors) on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations (e.g., instrument ...

  7. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    In the examples listed above, a nuisance variable is a variable that is not the primary focus of the study but can affect the outcomes of the experiment. [3] They are considered potential sources of variability that, if not controlled or accounted for, may confound the interpretation between the independent and dependent variables .

  8. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/wiki/Seemingly_unrelated...

    In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...

  9. List of statistics articles - Wikipedia

    en.wikipedia.org/wiki/List_of_statistics_articles

    Missing completely at random; Missing data; Missing values – see Missing data; Mittag–Leffler distribution; Mixed logit; Misconceptions about the normal distribution; Misuse of statistics; Mixed data sampling; Mixed-design analysis of variance; Mixed model; Mixing (mathematics) Mixture distribution; Mixture model; Mixture (probability ...