Search results
Results From The WOW.Com Content Network
The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.
Following his remarks on the propagation medium and the speed of light, Huygens gives a geometric illustration of the wavefront, the foundation of what became known as Huygens’ Principle. His principle of propagation is a demonstration of how a wave of light (or rather a pulse) emanating from a point also results in smaller wavelets: [12]
It is an extension of Huygens–Fresnel principle, which describes each point on a wavefront as a spherical wave source. The equivalence of the imaginary surface currents are enforced by the uniqueness theorem in electromagnetism , which dictates that a unique solution can be determined by fixing a boundary condition on a system.
The Huygens–Fresnel principle can be derived by integrating over a different closed surface (the boundary of some volume having an observation point P). The area A 1 above is replaced by a part of a wavefront (emitted from a P 0 ) at r 0 , which is the closest to the aperture, and a portion of a cone with a vertex at P 0 , which is labeled A ...
However, given the above simplifications, Huygens' principle provides a quick method to predict the propagation of a wavefront through, for example, free space. The construction is as follows: Let every point on the wavefront be considered a new point source. By calculating the total effect from every point source, the resulting field at new ...
Notation for calculating the wave amplitude at point P 1 from a spherical point source at P 0.. At the heart of Fresnel's wave theory is the Huygens–Fresnel principle, which states that every unobstructed point of a wavefront becomes the source of a secondary spherical wavelet and that the amplitude of the optical field E at a point on the screen is given by the superposition of all those ...
Much of the behaviour of light can be modelled using classical wave theory. The Huygens–Fresnel principle is one such model; it states that each point on a wavefront generates a secondary wavelet, and that the disturbance at any subsequent point can be found by summing the contributions of
Augustin-Jean Fresnel [Note 1] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton's corpuscular theory, from the late 1830s [3] until the end of the 19th century.