Search results
Results From The WOW.Com Content Network
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).
Natural uranium consists of three isotopes; the majority (99.274%) is U-238, while approximately 0.72% is U-235, fissile by thermal neutrons, and the remaining 0.0055% is U-234. If natural uranium is enriched to 3% U-235, it can be used as fuel for light water nuclear reactors. If it is enriched to 90% uranium-235, it can be used for nuclear ...
Infrared absorption spectra of the two UF 6 isotopes at 300 and 80 K. Schematic of a stage of an isotope separation plant for uranium enrichment with laser. An infrared laser with a wavelength of approx. 16 μm radiates at a high repetition rate onto a UF6 carrier gas mixture, which flows supersonically out of a laval nozzle.
The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms). By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly uranium enrichment is ...
Gaseous diffusion is a technology that was used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF 6) through microporous membranes. This produces a slight separation (enrichment factor 1.0043) between the molecules containing uranium-235 ( 235 U) and uranium-238 ( 238 U).
Lawrence's hunch about the effect of the air molecules in the vacuum chamber was confirmed. A nine-hour run on 14 January 1942 with a 50 μA beam produced 18 micrograms (μg) of uranium enriched to 25% uranium-235, about ten times as much as Nier had produced. By February, improvements in the technique allowed it to generate a 1,400 μA beam.
Other methods of separation were more practical at that time, but this method was designed and used in South Africa for producing reactor fuel with a uranium-235 content of around 3–5%, and 80–93% enriched uranium for use in nuclear weapons. The Uranium Enrichment Corporation of South Africa, Ltd. (UCOR) developed the process, operating a ...
As this is an analytical chemistry technique quality control is an important factor to maintain. A laboratory must produce trustworthy results. This can be accomplished by a laboratories continual effort to maintain instrument calibration, measurement reproducibility, and applicability of analytical methods. [9]