Ads
related to: relational algebra generator
Search results
Results From The WOW.Com Content Network
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...
Query by Example (QBE) is a database query language for relational databases. It was devised by Moshé M. Zloof at IBM Research during the mid-1970s, in parallel to the development of SQL. [1] It is the first graphical query language, using visual tables where the user would enter commands, example elements and conditions.
Another form of composition of relations, which applies to general -place relations for , is the join operation of relational algebra. The usual composition of two binary relations as defined here can be obtained by taking their join, leading to a ternary relation, followed by a projection that removes the middle component.
The problem of deciding whether for a given Datalog program there is an equivalent nonrecursive program (corresponding to a positive relational algebra query, or, equivalently, a formula of positive existential first-order logic, or, as a special case, a conjunctive query) is known as the Datalog boundedness problem and is undecidable.
In relational algebra, a projection is a unary operation written as ,..., (), where is a relation and ,..., are attribute names. Its result is defined as the set obtained when the components of the tuples in are restricted to the set {,...,} – it discards (or excludes) the other attributes.
Relational calculus is essentially equivalent to first-order logic, [1] and indeed, Codd's Theorem had been known to logicians since the late 1940s. [2] [3] Query languages that are equivalent in expressive power to relational algebra were called relationally complete by Codd. By Codd's Theorem, this includes relational calculus.
Projection (linear algebra) – Idempotent linear transformation from a vector space to itself; Projection (relational algebra) – Operation that restricts a relation to a specified set of attributes; Relation (mathematics) – Relationship between two sets, defined by a set of ordered pairs