Search results
Results From The WOW.Com Content Network
The magnetic Lorentz force v × B drives a current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. This device generates an emf and a current, although the shape of the "circuit" is constant and thus the flux through the circuit does not change ...
On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to decrease the flux through that side of the circuit, opposing the increase in flux due to rotation. On the near side of the figure ...
The current induced in a circuit due to a change in a magnetic field is directed to oppose the change in flux and to exert a mechanical force which opposes the motion. Lenz's law is contained in the rigorous treatment of Faraday's law of induction (the magnitude of EMF induced in a coil is proportional to the rate of change of the magnetic flux ...
Because the induced voltage is greatest when the current is increasing, the voltage and current waveforms are out of phase; the voltage peaks occur earlier in each cycle than the current peaks. The phase difference between the current and the induced voltage is ϕ = 1 2 π {\displaystyle \phi ={\tfrac {1}{2}}\pi } radians or 90 degrees, showing ...
Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. [ 46 ] : 11 If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction.
In a simple alternating current (AC) circuit consisting of a source and a linear time-invariant load, both the current and voltage are sinusoidal at the same frequency. [3] If the load is purely resistive, the two quantities reverse their polarity at the same time. Hence, the instantaneous power, given by the product of voltage and current, is ...
The electric field sends the electron to the p-type material, and the hole to the n-type material. If an external current path is provided, electrical energy will be available to do work. The electron flow provides the current, and the cell's electric field creates the voltage. With both current and voltage the silicon cell has power.
These induced surface charges create an opposing electric field that exactly cancels the field of the external charge throughout the interior of the metal. Therefore electrostatic induction ensures that the electric field everywhere inside a conductive object is zero. A remaining question is how large the induced charges are.