Search results
Results From The WOW.Com Content Network
At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)
The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then is a local minimum, and if it is negative, then is a local maximum; if it is zero, then the test is inconclusive. In two variables, the determinant can ...
The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
In this case, instead of repeatedly applying the derivative, one repeatedly applies partial derivatives with respect to different variables. For example, the second order partial derivatives of a scalar function of n variables can be organized into an n by n matrix, the Hessian matrix. One of the subtle points is that the higher derivatives are ...
The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum.
In the case of a function of a single variable, the Hessian is simply the second derivative, viewed as a 1×1-matrix, which is nonsingular if and only if it is not zero. In this case, a non-degenerate critical point is a local maximum or a local minimum, depending on the sign of the second derivative, which is positive for a local minimum and ...
One can do this either by evaluating the function at each point and taking the maximum, or by analyzing the derivatives further, using the first derivative test, the second derivative test, or the higher-order derivative test.