Search results
Results From The WOW.Com Content Network
The magnetic flux is the net number of field lines passing through that surface; that is, the number passing through in one direction minus the number passing through in the other direction (see below for deciding in which direction the field lines carry a positive sign and in which they carry a negative sign). [2]
(This definition of magnetic flux is why B is often referred to as magnetic flux density.) [35]: 210 The negative sign represents the fact that any current generated by a changing magnetic field in a coil produces a magnetic field that opposes the change in the magnetic field that induced it.
Magnetic susceptibility is a dimensionless proportionality constant that indicates the degree of magnetization of a material in response to an applied magnetic field. A related term is magnetizability, the proportion between magnetic moment and magnetic flux density. [3]
Paramagnetic materials are attracted to magnetic fields, hence have a relative magnetic permeability greater than one (or, equivalently, a positive magnetic susceptibility). The magnetic moment induced by the applied field is linear in the field strength, and it is rather weak. It typically requires a sensitive analytical balance to detect the ...
The validity of Ampère's model means that it is allowable to think of the magnetic material as if it consists of current-loops, and the total effect is the sum of the effect of each current-loop, and so the magnetic effect of a real magnet can be computed as the sum of magnetic effects of tiny pieces of magnetic material that are at a distance ...
The tesla is equivalent to the magnetic flux (in webers) per unit area (in meters squared), thus giving B the unit of a flux density. In CGS, the unit of B is the gauss (G). One tesla equals 10 4 G. The magnetic field H is given in SI units of ampere-turns per meter (A-turn/m).
The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...
The induced electromotive force in any closed circuit is equal to the negative of the time rate of change of the magnetic flux enclosed by the circuit. [ 2 ] [ 3 ] This version of Faraday's law strictly holds only when the closed circuit is a loop of infinitely thin wire, [ 4 ] and is invalid in other circumstances.