Search results
Results From The WOW.Com Content Network
For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures . Data types
Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas. [2] [3] [4] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
What is the fastest algorithm for matrix multiplication? Can all-pairs shortest paths be computed in strongly sub-cubic time, that is, in time O(V 3−ϵ) for some ϵ>0? Can the Schwartz–Zippel lemma for polynomial identity testing be derandomized? Does linear programming admit a strongly polynomial-time algorithm?
The algorithm was designed by Quentin F. Stout and Bette Warren in a 1986 CACM paper, [1] based on work done by Colin Day in 1976. [2] The algorithm requires linear (O(n)) time and is in-place. The original algorithm by Day generates as compact a tree as possible: all levels of the tree are completely full except possibly the bottom-most.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...