When.com Web Search

  1. Ad

    related to: deep learning theory book pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  3. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Algorithmic learning theory, from the work of E. Mark Gold; [7] Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms.

  4. François Chollet - Wikipedia

    en.wikipedia.org/wiki/François_Chollet

    Chollet is the author of Xception: Deep Learning with Depthwise Separable Convolutions, [10] which is among the top ten most cited papers in CVPR proceedings at more than 18,000 citations. [11] Chollet is the author of the book Deep Learning with Python, [12] which sold over 100,000 copies, and the co-author with Joseph J. Allaire of Deep ...

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The first deep learning multilayer perceptron trained by stochastic gradient descent [28] was published in 1967 by Shun'ichi Amari. [29] In computer experiments conducted by Amari's student Saito, a five layer MLP with two modifiable layers learned internal representations to classify non-linearily separable pattern classes. [10]

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  7. The Master Algorithm - Wikipedia

    en.wikipedia.org/wiki/The_Master_Algorithm

    The book outlines five approaches of machine learning: inductive reasoning, connectionism, evolutionary computation, Bayes' theorem and analogical modelling.The author explains these tribes to the reader by referring to more understandable processes of logic, connections made in the brain, natural selection, probability and similarity judgments.

  8. Kunihiko Fukushima - Wikipedia

    en.wikipedia.org/wiki/Kunihiko_Fukushima

    Kunihiko Fukushima (Japanese: 福島 邦彦, born 16 March 1936) is a Japanese computer scientist, most noted for his work on artificial neural networks and deep learning. He is currently working part-time as a senior research scientist at the Fuzzy Logic Systems Institute in Fukuoka , Japan.

  9. Alexey Ivakhnenko - Wikipedia

    en.wikipedia.org/wiki/Alexey_Ivakhnenko

    Alexey Ivakhnenko (Ukrainian: Олексíй Григо́рович Іва́хненко; 30 March 1913 – 16 October 2007) was a Soviet and Ukrainian mathematician most famous for developing the group method of data handling (GMDH), a method of inductive statistical learning, for which he is considered as one of the founders of deep learning.