Search results
Results From The WOW.Com Content Network
In mechanical engineering, an overconstrained mechanism is a linkage that has more degrees of freedom than is predicted by the mobility formula. The mobility formula evaluates the degree of freedom of a system of rigid bodies that results when constraints are imposed in the form of joints between the links.
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.
The above example simply states that the function takes the value () for all x values larger than a. With this, all the forces acting on a beam can be added, with their respective points of action being the value of a. A particular case is the unit step function,
Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams.Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading.
Since the Dirac bracket respects the constraints, one need not be careful about evaluating all brackets before using any weak equations, as is the case with the Poisson bracket. Note that while the Poisson bracket of bosonic (Grassmann even) variables with itself must vanish, the Poisson bracket of fermions represented as a Grassmann variables ...
The Lie bracket is an R-bilinear operation and turns the set of all smooth vector fields on the manifold M into an (infinite-dimensional) Lie algebra. The Lie bracket plays an important role in differential geometry and differential topology , for instance in the Frobenius integrability theorem , and is also fundamental in the geometric theory ...
Another consideration is the relation of the finite-dimensional space to its infinite-dimensional counterpart in the examples above . A conforming element method is one in which space is a subspace of the element space for the continuous problem. The example above is such a method.
Hamilton's equations of motion have an equivalent expression in terms of the Poisson bracket. This may be most directly demonstrated in an explicit coordinate frame. Suppose that (,,) is a function on the solution's trajectory-m