Ad
related to: schwann cell nucleus definition anatomy and physiology worksheet
Search results
Results From The WOW.Com Content Network
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.
Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]
Nervous tissue, also called neural tissue, is the main tissue component of the nervous system.The nervous system regulates and controls body functions and activity. It consists of two parts: the central nervous system (CNS) comprising the brain and spinal cord, and the peripheral nervous system (PNS) comprising the branching peripheral nerves.
The nonmyelinating Schwann cells are a subgroup of the Schwann cells characterized by not forming myelin. [1]The group of nonmyelinating Schwann cells includes the terminal Schwann cells, present at neuromuscular junctions, the Schwann cells of Remak fibers (also called Remak Schwann cells) and the Schwann cells associated to sensory structures, like tactile corpuscles and lamellar corpuscles.
The nucleus is the source of most of the RNA that is produced in neurons. In general, most proteins are produced from mRNAs that do not travel far from the cell nucleus. This creates a challenge for supplying new proteins to axon endings that can be a meter or more away from the soma.
Schwann dedicated a chapter of the treatise to explicitly formulate the cell theory, stating that ("the elementary parts of all tissues are formed of cells” and that “there is one universal principle of development for the elementary parts of organisms... and this principle is in the formation of cells" (Henry Smith's translation, 1847).
The inner mesaxon (Terminologia histologica: Mesaxon internum) is the connection between the myelin sheath and the inner part of the cell membrane of the Schwann cell, which is directly opposite the axolemma, i.e. the cell membrane of the nerve fibre ensheathed by the Schwann cell.
Theodor Schwann (German pronunciation: [ˈteːodoːɐ̯ ˈʃvan]; [1] [2] 7 December 1810 – 11 January 1882) was a German physician and physiologist. [3] His most significant contribution to biology is considered to be the extension of cell theory to animals.