Search results
Results From The WOW.Com Content Network
The Huygens–Fresnel principle provides a reasonable basis for understanding and predicting the classical wave propagation of light. However, there are limitations to the principle, namely the same approximations done for deriving the Kirchhoff's diffraction formula and the approximations of near field due to Fresnel.
Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction (French: Traité de la Lumière: Où sont expliquées les causes de ce qui luy arrive dans la reflexion & dans la refraction) is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690.
Later, in 1690, Huygens identified polarization as a characteristic of light and provided a demonstration using two identical blocks of calcite placed in succession. Each crystal divided an incoming ray of light into two, which Huygens referred to as "regular" and "irregular" (in modern terminology: ordinary and extraordinary). However, if the ...
This theory came to dominate the conceptions of light in the eighteenth century, displacing the previously prominent vibration theories, where light was viewed as "pressure" of the medium between the source and the receiver, first championed by René Descartes, and later in a more refined form by Christiaan Huygens. [1]
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
The Huygens–Fresnel principle is one such model; it states that each point on a wavefront generates a secondary wavelet, and that the disturbance at any subsequent point can be found by summing the contributions of the individual wavelets at that point.
Christiaan Huygens, Lord of Zeelhem, FRS (/ ˈ h aɪ ɡ ən z / HY-gənz, [2] US also / ˈ h ɔɪ ɡ ən z / HOY-gənz; [3] Dutch: [ˈkrɪstijaːn ˈɦœyɣə(n)s] ⓘ; also spelled Huyghens; Latin: Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution.
These authors credit Huygens with the first calculation of the speed of light. [18] Huygens's estimate was a value of 110,000,000 toises per second: as the toise was later determined to be just under two metres, [note 10] this gives the value in SI units.