Search results
Results From The WOW.Com Content Network
A graph of the function () = and the area between it and the -axis, (i.e. the entire real line) which is equal to . The Gaussian integral , also known as the Euler–Poisson integral , is the integral of the Gaussian function f ( x ) = e − x 2 {\displaystyle f(x)=e^{-x^{2}}} over the entire real line.
If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...
The function belongs to one of the symbol classes, for some . Intuitively, these symbol classes generalize the notion of positively homogeneous functions of degree m {\displaystyle m} . As with the phase function ϕ {\displaystyle \phi } , in some cases the function a {\displaystyle a} is taken to be in more general, or just different, classes.
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...
Once one has an algorithm for estimating the Gaussian function parameters, it is also important to know how precise those estimates are. Any least squares estimation algorithm can provide numerical estimates for the variance of each parameter (i.e., the variance of the estimated height, position, and width of the function).
A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.