Search results
Results From The WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
2.1 Intersecting and disjoint sets. 3 Algebraic properties. ... The number 9 is not in the intersection of the set of prime numbers {2, 3, 5, 7, 11, ...
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
For instance, had been declared as a subset of , with the sets and not necessarily related to each other in any way, then would likely mean instead of . If it is needed then unless indicated otherwise, it should be assumed that X {\displaystyle X} denotes the universe set , which means that all sets that are used in the formula are subsets of X ...
[2] Axiom of cardinality: The sets A and B are equinumerous if and only if Card(A) = Card(B) Definition: the sum of cardinals K and L such as K= Card(A) and L = Card(B) where the sets A and B are disjoint, is Card (A ∪ B). The definition of a finite set is given independently of natural numbers: [3]
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
For example, the closed intervals [0, 1] and [1, 2] are almost disjoint, because their intersection is the finite set {1}. However, the unit interval [0, 1] and the set of rational numbers Q are not almost disjoint, because their intersection is infinite. This definition extends to any collection of sets.
Equivalently, a Boolean group is an elementary abelian 2-group. Consequently, the group induced by the symmetric difference is in fact a vector space over the field with 2 elements Z 2. If X is finite, then the singletons form a basis of this vector space, and its dimension is therefore equal to the number of elements of X.