When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change. Discrete calculus has two entry points, differential calculus and integral calculus. Differential calculus concerns incremental rates of change and the slopes of piece-wise linear curves.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The derivative of the momentum of a body with respect to time equals the force applied to the body; rearranging this derivative statement leads to the famous F = ma equation associated with Newton's second law of motion. The reaction rate of a chemical reaction is a derivative.

  8. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  9. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles apply the calculus of variation to the action. The action depends on the energy function, and the energy function depends on the position, motion, and interactions in the system: variation of the action allows the derivation of the equations of motion without vector or forces.