Search results
Results From The WOW.Com Content Network
Graphs of dynamic amplification factors vs non-dimensional rise time (t r /T) exist for standard loading functions (for an explanation of rise time, see time history analysis below). Hence the DAF for a given loading can be read from the graph, the static deflection can be easily calculated for simple structures and the dynamic deflection found.
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
Dynamic Substructuring (DS) is an engineering tool used to model and analyse the dynamics of mechanical systems by means of its components or substructures. Using the dynamic substructuring approach one is able to analyse the dynamic behaviour of substructures separately and to later on calculate the assembled dynamics using coupling procedures.
In the linear dynamic procedure, the building is modelled as a multi-degree-of-freedom (MDOF) system with a linear elastic stiffness matrix and an equivalent viscous damping matrix. The seismic input is modelled using either modal spectral analysis or time history analysis but in both cases, the corresponding internal forces and displacements ...
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
In structural engineering, the direct stiffness method, also known as the matrix stiffness method, is a structural analysis technique particularly suited for computer-automated analysis of complex structures including the statically indeterminate type.
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
The stability of fixed points of a system of constant coefficient linear differential equations of first order can be analyzed using the eigenvalues of the corresponding matrix. An autonomous system ′ =, where x(t) ∈ R n and A is an n×n matrix with real entries, has a constant solution =