Search results
Results From The WOW.Com Content Network
If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...
This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then f n (x) = 0. However, every function f n has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).
Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n could also stand for the n-fold product of f, e.g. f 2 (x) = f(x) · f(x). [12] For trigonometric functions, usually the latter is meant, at least for positive exponents. [12]
That is, x ∈ lim sup X n if and only if there exists a subsequence (X n k) of (X n) such that x ∈ X n k for all k. lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, x ∈ lim inf X n if and only if there exists some m > 0 such that x ∈ X n for all n > m.
Theorem — Let U be an open subset of R n and φ : U → R n be a bi-Lipschitz mapping. Let f : φ ( U ) → R be measurable. Then ∫ φ ( U ) f ( x ) d x = ∫ U ( f ∘ φ ) ( x ) | det D φ ( x ) | d x {\displaystyle \int _{\varphi (U)}f(x)\,dx=\int _{U}(f\circ \varphi )(x)\,\,\left|\!\det D\varphi (x)\right|\,dx} in the sense that if ...
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
For example, the third derivative with a second-order accuracy is ‴ () + (+) + (+) + (), where represents a uniform grid spacing between each finite difference ...
The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f (x) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region. Thus for x in this region, f is given by a convergent ...